3.12.70 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx\) [1170]

Optimal. Leaf size=174 \[ \frac {(19 A+3 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/4*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(5/2)-1/16*(9*A-7*C)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)
/(a+a*sec(d*x+c))^(3/2)+1/32*(19*A+3*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c
))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {4350, 4170, 4097, 3893, 212} \begin {gather*} \frac {(19 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

((19*A + 3*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c
 + d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - ((A + C)*Sin[c + d*x])/(4*d*Cos[c + d*x]^(3/2)*(a + a*Se
c[c + d*x])^(5/2)) - ((9*A - 7*C)*Sin[c + d*x])/(16*a*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4097

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])
^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0
] && LeQ[m, -1]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx\\ &=-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (-\frac {1}{2} a (7 A-C)+a (A-3 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left ((19 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left ((19 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(19 A+3 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.96, size = 110, normalized size = 0.63 \begin {gather*} \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (8 (19 A+3 C) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+4 (-9 A+7 C+(-13 A+3 C) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{64 a d \cos ^{\frac {3}{2}}(c+d x) (a (1+\sec (c+d x)))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

(Sec[(c + d*x)/2]*(8*(19*A + 3*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^4 + 4*(-9*A + 7*C + (-13*A + 3*C)
*Cos[c + d*x])*Sin[(c + d*x)/2]))/(64*a*d*Cos[c + d*x]^(3/2)*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(339\) vs. \(2(145)=290\).
time = 0.20, size = 340, normalized size = 1.95

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (13 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+19 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-3 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+3 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-4 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+19 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-4 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+3 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-9 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+7 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{16 d \,a^{3} \sin \left (d x +c \right )^{5} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}\) \(340\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/16/d*(-1+cos(d*x+c))^2*(13*A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+19*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*
x+c)))^(1/2))*sin(d*x+c)*cos(d*x+c)-3*C*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+3*C*arctan(1/2*sin(d*x+c)*(-2/(
1+cos(d*x+c)))^(1/2))*sin(d*x+c)*cos(d*x+c)-4*A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+19*A*arctan(1/2*sin(d*x+c
)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-4*C*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+3*C*arctan(1/2*sin(d*x+c)*(-2
/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-9*A*(-2/(1+cos(d*x+c)))^(1/2)+7*C*(-2/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^(1/
2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/a^3/sin(d*x+c)^5/(-2/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 5530 vs. \(2 (145) = 290\).
time = 1.36, size = 5530, normalized size = 31.78 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/32*((19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x
+ 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x +
 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^
2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/
2*c) + 1))*sin(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2
*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 +
 2*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c) + 114*(log(cos(1/2*d*x + 1/2
*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*
c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c)
+ 1))*cos(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19
*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 26*sin(7/2*d*x + 7/2*c) -
 10*sin(5/2*d*x + 5/2*c) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(4*d*x + 4*c) + 104*(2*sin(3*
d*x + 3*c) + 3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(7/2*d*x + 7/2*c) + 8*(114*(log(cos(1/2*d*x + 1/2*c)^2 +
sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2
*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin
(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*co
s(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 10*sin(5/2*d*x + 5/2*c) + 10*sin(
3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(3*d*x + 3*c) + 40*(3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(5/
2*d*x + 5/2*c) + 12*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 19*log(cos(1/
2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(
1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(2*d*
x + 2*c) + 8*(19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(co
s(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 26*sin(1/2*d*x + 1/2*c))*cos(d*x
 + c) + 4*(38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c) + 57*(log(cos(1/2*d*x
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x
+ 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1
/2*c) + 1))*sin(d*x + c) + 13*cos(7/2*d*x + 7/2*c) + 5*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*c) - 13*cos(
1/2*d*x + 1/2*c))*sin(4*d*x + 4*c) - 52*(4*cos(3*d*x + 3*c) + 6*cos(2*d*x + 2*c) + 4*cos(d*x + c) + 1)*sin(7/2
*d*x + 7/2*c) + 16*(57*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(co
s(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin
(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + ...

________________________________________________________________________________________

Fricas [A]
time = 4.05, size = 482, normalized size = 2.77 \begin {gather*} \left [\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 9 \, A - 7 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 9 \, A - 7 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19
*A + 3*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(
d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((13*A - 3*C)*cos(
d*x + c) + 9*A - 7*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x
+ c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 +
 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*((13*A - 3*C)*cos(d*x + c) + 9*
A - 7*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^
3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6439 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________